7 research outputs found

    Exploiting pitch dynamics for speech spectral estimation using a two-dimensional processing framework

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 133-135).This thesis addresses the problem of obtaining an accurate spectral representation of speech formant structure when the voicing source exhibits a high fundamental frequency. Our work is inspired by auditory perception and physiological modeling studies implicating the use of temporal changes in speech by humans. Specifically, we develop and evaluate signal processing schemes that exploit temporal change of pitch as a basis for high-pitch formant estimation. As part of our development, we assess the source-filter separation capabilities of several two-dimensional processing schemes that utilize both standard spectrographic and auditory-based time-frequency representations. Our methods show quantitative improvements under certain conditions over representations derived from traditional and homomorphic linear prediction. We conclude by highlighting potential benefits of our framework in the particular application of speaker recognition with preliminary results indicating a performance gender-gap closure on subsets of the TIMIT corpus.by Tianyu Tom Wang.S.M

    Toward an interpretive framework of two-dimensional speech-signal processing

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 177-179).Traditional representations of speech are derived from short-time segments of the signal and result in time-frequency distributions of energy such as the short-time Fourier transform and spectrogram. Speech-signal models of such representations have had utility in a variety of applications such as speech analysis, recognition, and synthesis. Nonetheless, they do not capture spectral, temporal, and joint spectrotemporal energy fluctuations (or "modulations") present in local time-frequency regions of the time-frequency distribution. Inspired by principles from image processing and evidence from auditory neurophysiological models, a variety of twodimensional (2-D) processing techniques have been explored in the literature as alternative representations of speech; however, speech-based models are lacking in this framework. This thesis develops speech-signal models for a particular 2-D processing approach in which 2-D Fourier transforms are computed on local time-frequency regions of the canonical narrowband or wideband spectrogram; we refer to the resulting transformed space as the Grating Compression Transform (GCT). We argue for a 2-D sinusoidal-series amplitude modulation model of speech content in the spectrogram domain that relates to speech production characteristics such as pitch/noise of the source, pitch dynamics, formant structure and dynamics, and offset/onset content. Narrowband- and wideband-based models are shown to exhibit important distinctions in interpretation and oftentimes "dual" behavior. In the transformed GCT space, the modeling results in a novel taxonomy of signal behavior based on the distribution of formant and onset/offset content in the transformed space via source characteristics. Our formulation provides a speech-specific interpretation of the concept of "modulation" in 2-D processing in contrast to existing approaches that have done so either phenomenologically through qualitative analyses and/or implicitly through data-driven machine learning approaches. One implication of the proposed taxonomy is its potential for interpreting transformations of other time-frequency distributions such as the auditory spectrogram which is generally viewed as being "narrowband"/"wideband" in its low/high-frequency regions. The proposed signal model is evaluated in several ways. First, we perform analysis of synthetic speech signals to characterize its properties and limitations. Next, we develop an algorithm for analysis/synthesis of spectrograms using the model and demonstrate its ability to accurately represent real speech content. As an example application, we further apply the models in cochannel speaker separation, exploiting the GCT's ability to distribute speaker-specific content and often recover overlapping information through demodulation and interpolation in the 2-D GCT space. Specifically, in multi-pitch estimation, we demonstrate the GCT's ability to accurately estimate separate and crossing pitch tracks under certain conditions. Finally, we demonstrate the model's ability to separate mixtures of speech signals using both prior and estimated pitch information. Generalization to other speech-signal processing applications is proposed.by Tianyu Tom Wang.Ph.D

    Towards co-channel speaker separation BY 2-D demodulation of spectrograms

    No full text
    This paper explores a two-dimensional (2-D) processing approach for co-channel speaker separation of voiced speech. We analyze localized time-frequency regions of a narrowband spectrogram using 2-D Fourier transforms and propose a 2-D amplitude modulation model based on pitch information for single and multi-speaker content in each region. Our model maps harmonically-related speech content to concentrated entities in a transformed 2-D space, thereby motivating 2-D demodulation of the spectrogram for analysis/synthesis and speaker separation. Using a priori pitch estimates of individual speakers, we show through a quantitative evaluation: 1) Utility of the model for representing speech content of a single speaker and 2) Its feasibility for speaker separation. For the separation task, we also illustrate benefits of the model's representation of pitch dynamics relative to a sinusoidal-based separation system.United States. Dept. of Defense. Air Force (Contract FA8721-05-C-0002

    High-Pitch Formant Estimation by Exploiting Temporal Change of Pitch

    No full text
    This paper considers the problem of obtaining an accurate spectral representation of speech formant structure when the voicing source exhibits a high fundamental frequency. Our work is inspired by auditory perception and physiological studies implicating the use of pitch dynamics in speech by humans. We develop and assess signal processing schemes aimed at exploiting temporal change of pitch to address the high-pitch formant frequency estimation problem. Specifically, we propose a 2-D analysis framework using 2-D transformations of the time-frequency space. In one approach, we project changing spectral harmonics over time to a 1-D function of frequency. In a second approach, we draw upon previous work of Quatieri and Ezzat , , with similarities to the auditory modeling efforts of Chi , where localized 2-D Fourier transforms of the time-frequency space provide improved source-filter separation when pitch is changing. Our methods show quantitative improvements for synthesized vowels with stationary formant structure in comparison to traditional and homomorphic linear prediction. We also demonstrate the feasibility of applying our methods on stationary vowel regions of natural speech spoken by high-pitch females of the TIMIT corpus. Finally, we show improvements afforded by the proposed analysis framework in formant tracking on examples of stationary and time-varying formant structure.United States. Dept. of Defense (Air Force Contract FA8721 05 C 0002
    corecore